
Comparing Bag-of-Words, SBERT, and GPT-3 for Bias Detection

Max Luo
maxluomail@gmail.com

Clayton Greenberg
cgreenbe@alumni.princeton.edu

Abstract

This project aims to detect bias in media by
training a machine learning model to recognize
biased sentences. We did this by using a dataset
containing 3700 sentences each annotated by
multiple experts. The approaches we used were
bag-of-words, SBERT, and GPT-3. For the bag-
of-words and SBERT models, we generated
prototype vectors for each class and used co-
sine similarity to classify sentences. For GPT-3,
we used the OpenAI API’s fine-tune function to
train a model on the dataset, with the prompt be-
ing a sentence and the completion representing
a class. The bag-of-words, SBERT, and GPT
models achieved F-scores of 0.614, 0.819, and
0.838 respectively. We concluded that GPT-3
is the most accurate model while SBERT is the
best model for a real-world application.

1 Introduction

Bias in media is inevitable, hard to discern, and
interferes with readers’ ability to formulate their
ideas. Bias comes in many forms: omitting facts,
emphasizing facts, wording, repeating certain facts,
and more. This project focuses on detecting bias by
word choice. Using a dataset annotated by multiple
experts, a machine-learning model can be trained
to recognize biased language. The models we tried
either used sentence embeddings or generated the
class the sentence falls into. The bag-of-words
model generates sentence embeddings based on
the number of word appearances, and the SBERT
model uses a modified version of BERT to generate
sentence embeddings. Part of our training data is
allocated to generating prototype sentence vectors
for each class, and we classify test sentences based
on their cosine similarity to the prototype vectors.
The generative model we used was GPT-3.

2 Background

There have been several studies on bias detection
in the past. Spinde et al. (2021) is the closest to

this study; we used the dataset they created. They
trained BERT and BERT-based models to classify
sentences as either biased or neutral, achieving an
F-score of 0.804. van den Berg and Markert (2020)
tried to identify informational bias. They did this by
including context from the entire article and articles
on the same topic. Kameswari et al. (2020) created
a classifier that detects political bias, focusing on
the connection between presuppositions and bias.

3 Dataset

The dataset used for this project is SG2 from BABE
- bias annotations by experts (Spinde et al., 2021)1.
The dataset contains 3700 sentences from various
news outlets, each of which is annotated by 5 ex-
perts. Each sentence is labeled for a topic, political
lean, biased words, bias rating (biased or unbiased),
and expression of opinion (1-5). The final labels
only contain the 3700 sentences with bias rating
based on the majority vote of the 5 experts.

3.1 Metrics
The dataset is balanced in both bias rating and po-
litical lean. 49.3% of sentences are biased and the
rest are non-biased. 26.9% of sentences lean left,
27.0% of sentences lean right, and the rest are ei-
ther center or non-political. The dataset is also
diverse: sentences fall into 23 different topics and
are from 11 news outlets.

According to Spinde et al. (2021), SG2 has a
Krippendorff’s alpha (inter-annotator agreement)
of 0.40, which is better than similar datasets.

4 Methods

We tried 3 different approaches: a bag-of-words
model, SBERT, and a fine-tuned version of GPT-3.

4.1 Bag-of-words model
The bag-of-words model is a simple model that
counts the number of times each word appears in a

1Data can be downloaded here.

mailto:maxluomail@gmail.com
mailto:cgreenbe@alumni.princeton.edu
https://github.com/Media-Bias-Group/Neural-Media-Bias-Detection-Using-Distant-Supervision-With-BABE.git


sentence. This gives a vector with a length equal to
the length of the vocabulary. We generated proto-
type vectors from the training subset for biased and
non-biased sentences using their mean. Each sen-
tence from the test subset is then classified based
on its cosine similarity to each prototype vector.
Words that do not appear in the training set are
completely ignored during classification.

We chose to use CountVectorizer from
sklearn (Pedregosa et al., 2011)2 to generate the
vectors. CountVectorizer has a few parame-
ters that can be tuned. ngram_range changes the
range of n-grams to be considered; for example,
ngram_range=(1,2) will consider both unigrams
and bigrams. Increasing this value will increase
the accuracy of the model for large datasets, but
higher values will result in extremely rare phrases.
Our dataset is small, so n-grams beyond bigrams
were not useful. Another parameter is vocabulary.
By default, CountVectorizer will use the entire
vocabulary of the training set. However, we can
also specify a vocabulary to use: in our case, it
could be the set of all biased_words. We decided
to try both using all words available in the training
set and using just the biased words.

4.2 SBERT

SBERT (Reimers and Gurevych, 2019) is a modi-
fication of the original BERT (Devlin et al., 2019)
model. It uses a triplet loss function to train its
Siamese architecture. This differs from BERT’s
cross-encoder architecture.

In practice, SBERT generates similar quality
sentence-level embeddings compared to BERT,
while being faster to train (Reimers and Gurevych,
2019). The SBERT website3 includes a list of pre-
trained models that are trained on large corpora
of text. These models require no preprocessing;
they take raw text as input and output a vector. In
addition, they can be used directly or fine-tuned for
our use case.

To fine-tune, we used the fit function included
in SentenceTransformer. We entered the sen-
tences and their label into InputExample’s, which
were loaded into a Dataloader and fed into the
fit function. The fit function contains many pa-
rameters that can be tuned: we changed the number
of epochs and loss function. To classify, we used
the same approach as the bag-of-words model.

2CountVectorizer documentation
3Documentation here

To further explore the effect of fine-tuning, we
tested an off-the-shelf model supplied by Google,
the Universal Sentence Encoder (Cer et al., 2018).
This model outputs 512-dimensional sentence em-
beddings that are intended to work well across
many domains. As such, we did not fine-tune them.

4.3 OpenAI GPT-3

Generative Pre-trained Transformer (GPT) is a
large language model that is most commonly used
to complete text prompts (text generation). It has
been adapted to perform chatting, inserting, and
editing tasks. At the time of writing, GPT-4 is only
accessible through a waitlist and does not support
fine-tuning, making it unsuitable for this project.

We adapted GPT to perform text classification.
To do this, we had to convert the data into a for-
mat that GPT can optimally process: a .jsonl
file with columns prompt and completion contain-
ing sentences and their labels respectively. Since
classes are recommended to be one token long,
we converted the completion from "biased" and
"non-biased" to "0" and "1" respectively. The
data preparation utility from OpenAI also recom-
mended that we add a space character before each
completion, which we did.

We then followed this guide4 to fine-tune GPT-
3. Since all OpenAI models are closed and pro-
cessing takes place on their servers, we did not
have as much freedom to change GPT. However,
two parameters that we did change were the base
model (ada, babbage, curie, davinci) and
the number of epochs. We used the ada (smaller)
and curie (larger) bases and varied the number of
epochs from 4 to 8.

To classify, we used the Completion.create
function from the OpenAI Python API. The com-
pletions mimicked the completions we supplied in
the training stage: a space character followed by
a 0 or 1, corresponding to either non-biased or bi-
ased. In rare cases, the model output was not a 0 or
1. In this case, we could choose to assume a class,
use another method of classifying the sentence, or
consider the model output wrong for that sentence.
We decided to assume the majority class (biased)
for these sentences.

5 Results and Discussion

As seen in Table 1, SBERT and GPT-3 far outper-
formed the bag-of-words model.

4this guide

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://www.sbert.net/
https://platform.openai.com/docs/guides/fine-tuning


Model Accuracy Precision Recall F-score
CountVectorizer; ngram_range = [2,2]) 0.642 0.647 0.593 0.614
CountVectorizer w/ biased_list vocab 0.587 0.566 0.600 0.582
Google Universal Sentence Encoder 0.693 0.717 0.688 0.702
SBERT: all-mpnet-base-v2 0.735 0.750 0.744 0.747
SBERT: all-roberta-large-v1 0.724 0.740 0.732 0.736
SBERT: all-mpnet-base-v2 fine-tuned, best parameters 0.823 0.828 0.811 0.819
GPT-3: curie-ft 0.833 0.841 0.835 0.838

Table 1: Results

Figure 1: Metrics for different values of ybias in one
of the fine-tuned SBERT models

The bag-of-words model’s F-score of 0.614
shows that there is some association between word
appearances and bias, but it is not far off from the
expected value for random guessing, 0.5. When we
shifted from using all available words to just the
biased words, the F-score decreased. We believe
that this happened because the dataset is small and
the list of biased words that happened to occur in
this dataset is too small to generalize well.

Without fine-tuning (only trained on generic5

data), SBERT outperformed the bag-of-words
model by over 10% and the Universal Sentence
Encoder by 4%. With fine-tuning, the model fur-
ther improved by 7%. This shows that the simi-
larity between biased sentences is related to tradi-
tional similarity, but differs in some ways. We also
tried adding a multiplier, ybias, that increased the
weight of biased sentences. The results can be seen
in Figure 1.

GPT-3 performs slightly better than SBERT,
with a 1-2% improvement in metrics. However,
it is much more expensive to train and run. It is

5pre-trained model information

not open source and only runs on OpenAI’s servers.
Furthermore, we changed the formal task to accom-
modate a pipeline that comes with GPT-3. As such,
the fine-tuning training data is highly unnatural and
we need a lot of it for this pipeline to work. There-
fore, we suggest that especially in a low-resource
setting, the costs of using GPT-3 this way may out-
weigh the benefits and SBERT is the most practical
model for a real-world application.

6 Conclusion and Limitations

We have shown three ways to classify text as bi-
ased or non-biased. The first is a bag-of-words
model, which is the most primitive and least accu-
rate. The second is a sentence embedding model,
which performs very well and is the most practical.
The third is GPT-3, which is the most accurate and
demonstrates that generative models can be used to
classify text.

All of these models have one major limitation:
they only identify bias based on word choice. There
are many other ways in which text can be biased,
such as the omission or exaggeration of true infor-
mation. The models are also incapable of identi-
fying misinformation. While these articles’ biases
tend to show in their word choice, writers can write
in a way that manipulates the reader without biased
word choice.

A few simple ways to improve our results would
be to use a larger dataset and to use an updated sen-
tence embedding or GPT model. In addition, we
are thinking about a program that rewrites articles
to retain information but remove biases. Such a
program could be made using GPT or another gen-
erative model. The model could be fine-tuned on
a dataset of biased and corresponding non-biased
text; while we are not sure such a dataset exists, we
could create one by using the model itself.

A practical application of this project would be
to build a news aggregator that assesses and in-

https://www.sbert.net/docs/pretrained_models.html


forms the user of the bias of the articles they read.
With a program that rewrites articles, the user could
also read a single unbiased article that is written by
AI, drawing information from many articles on the
same topic. This would allow the reader to quickly
get an uninfluenced overview of a topic.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lalitha Kameswari, Dama Sravani, and Radhika
Mamidi. 2020. Enhancing bias detection in political
news using pragmatic presupposition. In Proceed-
ings of the Eighth International Workshop on Natural
Language Processing for Social Media, pages 1–6,
Online. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In ICLR 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Timo Spinde, Manuel Plank, Jan-David Krieger, Terry
Ruas, Bela Gipp, and Akiko Aizawa. 2021. Neu-
ral media bias detection using distant supervision
with BABE - bias annotations by experts. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1166–1177, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Esther van den Berg and Katja Markert. 2020. Context
in informational bias detection. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6315–6326, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.socialnlp-1.1
https://doi.org/10.18653/v1/2020.socialnlp-1.1
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.findings-emnlp.101
https://doi.org/10.18653/v1/2021.findings-emnlp.101
https://doi.org/10.18653/v1/2021.findings-emnlp.101
https://doi.org/10.18653/v1/2020.coling-main.556
https://doi.org/10.18653/v1/2020.coling-main.556

